Financial ratio Earnings before interest & tax ROE/ROCE = Earnings before interest and a second method and a second secon x 100% $=\frac{\text{Net profits}}{\text{Assets}} \times 100\%$ Return on investment $= \frac{\text{Gross profits}}{\text{Sales}} \times 100\%$ Gross profit margin $=\frac{\text{Net profits}}{100\%} \times 100\%$ Net profit margin Sales Profit after interest, after taxation & after preference dividends x 100%EPS = No. of ordinary shares in issued Market price per share PE ratio EPS Current assets Current ratio **Current** liabilities = Current assets-inventory-prepayment Acid-test ratio **Current** liabilities $=\frac{\text{Accounts receivable}}{\text{x 365}}$ AR collection period Credit sales Credit sales AR turnover = Accounts receivable $=\frac{\text{Accounts payable}}{2} \times 365$ AP settlement period Credit purchases Credit purchases AP turnover $=\frac{\text{Crease}_{F}}{\text{Accounts payable}}$ Inventories Days inventory $\frac{\text{Inventories}}{\text{Cost of goods sold}} \ge 365$ = $= \frac{\text{Cost of goods sold}}{\text{Cost of goods sold}}$ Inventory Turnover Inventories Total liabilities Debt ratio = Total assets Total Liabilities Debts to equity ratio = Earnings before interest & tax Interest coverage ratio Interest expenses The time value of money $= (1+i)^n$ Future value of a single sum 1 Present value of a single $=\frac{1}{(1+i)^n}$ sum $=\frac{(1+i)^n-1}{i}$ Future value of an ordinary annuity $=\frac{(1+i)^n - 1}{i} (1+i)$ Future value of an annuity due $=\frac{1-\left[\frac{1}{(1+i)^n}\right]}{1-\left[\frac{1}{(1+i)^n}\right]}$ Present value of an ordinary annuity

FORMULA FIN1513 INTRODUCTION TO FINANCE

Present value of an	$1 - \begin{bmatrix} 1 \\ - \end{bmatrix}$
annuity due	$=(1+i)\frac{1-[(1+i)^n]}{(1-i)^n}$
Simple interest	$= P_0 x i x n$
Compound interest	$= P x [(1 + i)^n - 1]$
Effective interest rate	$=\left 1+\frac{i}{n}\right ^n-1$
Nominal interest rate	$= n[(1 + i_{eff})^{1/n} - 1]$
Risk and Return	
Rate of return (r)	$=\frac{D+(P1-P0)}{P0}$
Dividend yield	$=\frac{D1}{P0}$
Capital gains yield	$=\frac{P1-P0}{P0}$
Expected rate of return (r̂)	$=\sum_{i=1}^{n}(r_i)(P_i)$
Standard deviation (σ)	$=\sqrt{\sum_{i=1}^{n}=(r_{i}-\hat{r})^{2} \times P_{i}}$
Coefficient of variation	σ
(CV)	$=\frac{1}{\hat{r}}$
Valuation of securities	
No growth dividend (Po)	= <u>D</u>
	r _e
Gordon Growth Model	$P_0 = \underline{D}_0 (1 + \underline{g})$
	$r_e - g$
	$r_{e} - g$
	$P_1 = P_0 x (1 + g)$
Rate of return	$r_{e} = \underline{D}_{0} (1 + \underline{g}) + \underline{g}$
	P_0
	$r_{\rm e} = \frac{D1 + (P_0 \times g)}{P_0}$
Dividend growth rate	$DGR = \left(\frac{Ending dividend}{Starting dividend}\right) - 1$
	(Starting ulvidend /
Compounded annual	$CACP = \left[\left(\frac{\text{Ending dividend}}{1} \right)^{1/n} - 1 \right]^{1/n}$
growth rate	CAOK – [(Starting dividend)] – 1
Coupon payment (PMT)	$= PV \times CR$
	n
Bond value (Po)	= PMT1 + PMT2 + PMTn + FV
Bond value (Po)	$= \frac{PMT1}{(1+r)^{1}} + \frac{PMT2}{(1+r)^{2}} + \dots \frac{PMTn + FV}{(1+r)^{n}}$

Yield to maturity (YTM)	$= \frac{\frac{PMT + \frac{FV - PV}{n}}{\frac{FV + PV}{2}}$	
Capital Budgeting Techniques		
Net Present value	$= CF_0 + \frac{CF_1}{(1+k)^1} + \frac{CF_2}{(1+k)^2} + \dots + \frac{CF_n}{(1+k)^n}$	
Profitability index	= $\frac{\text{Present value of future cash flows}}{\text{initial investment}}$	
Accounting rate of return (%)	= Average annual income Average /initial investment	
Payback period on equal cash flows (years)	= Initial investment Annual net cah inflows	
Internal rate of return (equal cash flows)	= Initial investment Annual net cah inflows	
Internal rate of return (unequal cash flows)	$= R1 + \left\{ (R2 - R1) \times \frac{NPV1}{(NPV1 - NPV2)} \right\}$	